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ABSTRACT

In this research, analog active ciicuits are implemented in VLSI technology by combining the

properties of switched capacitors and composite amplifiers. This combined design improves upon the

single operational amplifier's finite dc gain, limited bandwidth, lower slew rate, as well as enhancing

the overall network passive and active sensitivities. The switched capacitor is implemented using both

the toggle switched capacitor and the modified open floating resistor techniques. The composite

operational amplifier is implemented using the C2OA-I and C2OA-2 designs from the CNOA-i

possibilites. These four designs are produced on a single microchip that includes the two phase non-

overlapping clock circuit and the switches. The microchip is tested in a finite gain circuit and the

results are used to evaluate the performance of the design. Short comings in the circuit performance

are identified and the analysis is used to improve network simulations as well as provide guidance for

design improvements. The design improvements are incorporated in a second generation microchip

that is fabricated in a low noise analog process.
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L INTRODUCTION

A. OVERVIEW

The operational amplifier (OA) is one of the most important analog integrated

circuits in use today. This widespread use makes the OA a much needed part of Very

Large Scale Integrated (VLSI) circuit designs. One of the difficulties arising from

implementing an OA in a VLSI fabrication process is the large amount of area and the

relative inaccuracies of producing resistors in the Complementary Metal Oxide Silicon

(CMOS) process. This problem can be overcome by eliminating the resistors in the

circuit and replacing them with switched capacitors. This will result in a size reduction

and increased accuracy without resorting to expensive process techniques such as laser

trimming. No additional or unique steps have to be added to the fabrication process to

realize the benefits of this type of implementation.

Some limiting factors in the non-ideal performance of the OA can be eliminated or

at least greatly improved by the use of composite operational amplifiers (CNOAs).

Combining the CNOAs in a parasitic free switched capacitor network allows for circuit

implementation on a single VLSI chip, as well as, provides considerable performance

improvement and bandwidth extension over the single OA. This combination has direct

applications in A/D and D/A conversion, digital communications, filtering, signal

processing, speech processing, modulator-demodulator circuitry, HDTV, and neural

network implementation to name a few.



This thesis proposes to build on previosly demonstrated stray insensitive switched

capacitor composite operational amplifiers implemented with discrete small scale

integrated and large scale integrated circuit components, with the purpose of implementing

the circuits using a VLSI process. This will result in 22 discrete elements being

implemented on a single microchip with the associated reduction in size, power

consumption, etc.

B. EXISTING PROBLEMS AND SOLUTIONS

The amount of noise injected into the analog signal path from the digital portion of

the circuit can cause unacceptable circuit performance degradation. This problem can be

addressed by applying proper design techniques, layout topologies and using a fabrication

process optimized for analog VLSI circuit implementation. Latchup is always a problem

that must be addressed in CMOS processes. Fortunately, there are relatively simple

design considerations which can prevent the failure of a circuit due to this problem which

is inherent to CMOS implementations.

C. THESIS ORGANIZATION

The goal of this thesis was to demonstrate through design, simulation, fabrication

and laboratory testing, the feasibility of implementing stray insensitive switched capacitor

composite operational amplifiers on a single CMOS microchip. The stray insensitive

switched capacitor composite operational amplifiers are briefly discussed in the second

chapter. The third chapter discusses the CMOS process. The design and selection of the

operational amplifiers is presented in the fourth chapter. The fifth chapter describes the
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process of implementing the switches and the switched capacitors. The development of

the clocking circuit is covered in chapter six and the design and implementation of the

complete microchip is discussed in chapter seven. Chapter eight covers the problems

encountered with the first microchip and it discusses the process used to fabricate the

second design. The conclusions developed from this thesis are presented in chapter nine,

as well as, recommendations for future research.



II. PtSCRETE COMPONENT IMPLEMENTATION

A. WHY THE COMPOSITE OPERATIONAL AMPLIFIER

The operational amplifier (OA) is a widely used component in a variety of

applications. The ideal OA has infinite input impedance, zero output impedance and

infinite differential voltage gain. The practical OA, on the other hand, has several

limitations such as finite dc gain, limited bandwidth, slow slew rate, finite input

impedance and less than ideal output impedance. These limitations must be considered

in any applications that use the operational amplifier. In many cases these characteristics

are the limiting factor that prevent improvement in the performance of the circuit.

Therefore, the need for an improved OA exists and the composite operational amplifier

is a solution that provides many improvements over the single OA.

Composite Operational Amplifiers (CNOAs) were developed by S. N. Michael and

W, B. Mikhael in 1981, their research and its applications have been published in

References I - 7. The development of the CNOAs provided for a method to extend the

operational frequency range (bandwidth) of linear active networks. The techniques used

in the design of the CNOAs resulted in 136 possible circuits. After establishing

performance criteria, the 136 designs were tested and four designs were selected that

demonstrated superior performance according to the stringent performance criteria. Using

the CNOA designation and replacing the N with the number of OAs employed, the four

designs were labeled C2OA-I through C2OA-4. Figure 2.1 illustrates the circuit diagrams

4



of the four composite operational amplifiers. These composite devices have three

terminals which resemble the input and output terminals of a single OA.
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B. WHY SWITCHED CAPACITORS WITH THE CNOA

The primary reason for using switched capacitors to replace the resistors in the

circuit comes from the desire to improve the VLSI implementation of the CNOA. Since

resistors and capacitors are made at different steps in the fabrication process, their errors

do not track one another. In addition, the temperature and voltage coefficients of resistors

and capacitors are not correlated. Therefore, the time constants will vary with

temperature and signal level. A solution to this problem is to replace the resistors in the

circuit with switched capacitors.

The formula in Equation 2.1 is the governing principle by which the resistors in the

circuit can be replaced by switched capacitors. This formula represents an approximation

R(2.1)
4CCR

of the resistance that the capacitor is replacing. The fc is the frequency of the clock used

to switch the capacitor and CR is the value of the capacitor that replaces the resistor in

the circuit.

It has been shown in detail, in Reference 8, that, with proper clock frequency and

phase a network of switched capacitors can emulate the operation and performance of a

resistor in a circuit. The equivalent circuit replacement for the resistor results in smaller

layout area and greatly reduced inaccuracies caused by process variations [Ref. 8:pp. 24 -

29].
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Another important benefit to using switched capacitors is the ability to tune the

operation of the circuit. The performance of the CNOA is dependent on a which is the

ratio of the capacitors in the circuit. If this ratio was implemented using resistors in the

CMOS process, the accuracy of a is typically no better than 10%, unless expensive laser

trimming is used. But, if capacitors are used, the CMOS process can produce very

accurate ratios between capacitors. This important ability is further explained in Chapter

V.

C. STRAY INSENSITIVE SWITCHED CAPACITOR NETWORKS

One difficulty that must be addressed when using switched capacitors in circuit

design is the internal stray (parasitic) capacitances. These parasitic capacitances are

unpredictable and can significantly affect the performance of any switched capacitor

network. Although the parasitic capacitances cannot be eliminated, their effect on the

performance of the circuit can be nullified by choosing an appropriate switched capacitor

topology.

There are few circuit topologies that can be used to nullify the effects of the lasting

parasitic capacitances. Two topologies, investigated in Reference 8, that can prevent stray

capacitance from adversely affecting a circuit are the toggle switched capacitor (TSC) and

the modified open-circuit floating resistor (mOFR) techniques. Using the TSC and mOFR

topologies, the composite operational amplifier designs C2OA-1 and C2OA-2 were chosen

for a discrete implementation to determine the feasibility of the switched capacitor

applications.

8



D. EXPERIMENTAL IMPLEMENTATION AND RESULTS

The four networks chosen to test the switched capacitor application were the C2OA-

I using the TSC topology, the C2OA-I using the mOFR topology, the C2OA-2 using the

TSC topology and the C2OA-2 using the mOFR topology. These networks were

constructed with discrete components on a bread board and then tested to experimentally

determine if the physical circuit performed as predicted by the theoretical calculations.

The results of this testing clearly showed the physical circuit was in close agreement with

the predicted performance parameters. A complete listing of the results of this testing

can be found in Reference 8.

The following Figures 2.2 through 2.5 are functionally correct network diagrams of

the four circuits that were tested. The 4b, indicates the even phase of a two phase non-

overlapping clock signal and 4). indicates the odd phase of the two phase non-overlapping

clock signal. The C. and the aCf are the capacitors being used to replace resistors in the

C2OA-I and C2OA-2 composite amplifier designs. The a indicates that there is a ratio

between the two capacitors. The a indicates the non-inverting input to the CNOA and the

b indicates the inverting input to the CNOA. The o is the output terminal of the CNOA.

The A, and A2 labels are on symbols that represent standard single operational amplifiers.
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Figum 2.2 Stnay Insensitive TSC C2OA-1
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IlL THE CMOS PROCESS

A. SILICON SEMICONDUCTOR TECHNOLO)GY

Silicon is the primary element used in the complementary metal oxide silicon

(CMOS) process. Silicon in its pure form is a semiconductor, meaning that it's current

carrying properties lie between that of a conductor and an insulator. By introducing

certain types of impurities into the silicon crystal the conductivity of the silicon can be

increased by several orders of magnitude. Depending on the type of impurity or dopant

used the resulting material will become either n-type or p-type substrate. If the impurity

provides excess free electrons, then it is called a donor element and it produces n-type

material. If the impurity provides excess holes, then it is called an acceptor element and

it produces p-type material.

The wafer is the initial product that is produced by semiconductor manufacturers.

It is produced by adding the appropriate type and quantity of dopant to a container of

molten silicon. A single seed crystal with the correct crystalline structure is lowered into

the polycrystalline silicon melt and from this a long cylindrical crystal called an ingot is

grown. This ingot is then sliced to produce the single wafers. The wafer that has been

produced will provide either a p-type or n-type substrate on which the transistors will be

produced.

14



B. PRODUCING NMOS AND PMOS TRANSISTORS

To produce an n-type metal oxide silicon (NMOS) transistor, the wafer must provide

a p-type substrate. The substrate material will form the channel of the NMOS transistor.

Figure 3.1 illustrates the different components of the NMOS transistor including the

different layers and their arrangement.

To produce a p-type metal oxide silicon (PMOS) transistor, the wafer must provide

an n-type substrate. As with the NMOS transistor, the substrate will form the channel of

the PMOS transistor. Figure 3.2 illustrates the different components of the PMOS

transistor including the different layers and their arrangement.
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Since the objective of the CMOS process is to provide the capability for NMOS

transistors and PMOS transistors on the same substrate, it is clear from the discussion

above that an additional feature is required. This additional feature is called a well. The

well is an area in the substrate that is created by doping that area with a dopant that is

opposite to the type used in the substrate. That is, a p-well process is one in which the

wafer or substrate is n-type and then a well is added that is p-type. An n-well process

is one in which the substrate is p-type and then a well is added that is n-type. Both of

these processes allow for the manufacture of both PMOS and NMOS transistors in the

same wafer. Figure 3.3 illustrates the layers and transistors as they would appear when

using a p-well process. Figure 3.4 illustrates the layers and transistors as they would

appear when using an n-well process.
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Another CMOS process that allows both PMOS and NMOS transistors on the same

substrate is the twin tub process. This process is similar to those described above except

that an epitaxial layer is produced above the substrate that is lightly doped. Then both

p-wells and n-wells can be produced in this layer providing for the capability to produce

NMOS and PMOS transistors. Figure 3.5 illustrates the layers and transistors as they

would appear in a twin tub CMOS process.
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Although the CMOS process provides much flexibility in circuit design, it does have

some shortcomings. Probably the most troublesome drawback is "latch-up". The result

of this effect is to provide a short between the most positive power supply and the most

negative power supply, usually resulting in the destruction of the chip or at least a failed

system requiring shutdown. Fortunately this characteristic is well understood now and

can easily be controlled by design considerations. The method of controlling this problem

is to provide a sufficient number of substrate contacts or well plugs. The purpose of the

well plug is to bias the well to the power supply opposite the one that is biasing the

native substrate. This creates a reverse bias on the well to substrate junction and prevents

latch-up. These substrate contacts were illustrated in Figures 3.3 and 3.4. For a more

detailed discussion of the CMOS process see Reference 9, pp. 32 - 98.

C. THE MOSIS PROCESS

In general, there are many different CMOS manufacturers that can provide a wide

range of technologies to choose from. The technology is usually referred to by the length

of the smallest transistor gate that can be produced with that process. Other variations

on manufacturers include those that produce only a certain application microchip or those

that provide some design flexibility in what is called a semi-custom microchip or those

that provide the most design flexibility in what is called a fully custom microchip.

MOSIS was the manufacturing process available for the fabrication of the microchip

designed in this thesis. The production line available was a 2 micron technology, full

custom process. This means that the minimum sized transistor has a gate length of 2

23



microns and that the design could be anything that would not violate the technology

design rules and would fit within the area of the microchip. Thus, this process allowed

for the maximum amount of flexibility within the limits of the technology.

Specific features of the process are two layers of metalization called metal I (ml)

and metal 2 (m2), a polysilicon (poly) layer used as the gate of transistors and for short

interconnects, both NMOS and PMOS transistors, a p-type substrate with n-wells and for

this design a maximum chip size of 2250 microns by 2220 microns. The maximum

number of pins allowed was 40, in a dual in line package (dip).
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IV. CMOS OPERATIONAL AMPLIFIER DESIGN

A. THE SEARCH FOR AN OPERATIONAL AMPLIFIER

Probably the most complicated and most important component needed to implement

the composite operational amplifier circuits was the CMOS OA. Therefore, a significant

amount of effort and research went into finding an existing design that would provide a

general purpose amplifier with average characteristics that could be easily implemented

in a VLSI design. Typical performance characteristics of a CMOS OA are unity gain

bandwidth of several megahertz, open loop gain of -I10 and slew rate of -5V/ps. Other

important factors considered were stability and size. The primary indicator used for

determining stability was phase margin. To ensure stability when placed in a closed loop

feedback network the designs considered needed to provide 600 or more phase margin.

The network to be implemented required eight operational amplifiers, thus it was

important that the amplifier be small enough so that eight would fit on the available area

and still leave enough room for switches, capacitors and a clocking circuit. With these

requirements in mind three designs were tested and evaluated as possible amplifier

designs.

Figure 4.1 through Figure 4.3 are circuit diagrams of the CMOS OAs considered

for use on the microchip. Standard transistor symbols are used to represent the NMOS

transistors and the PMOS transistors. Each of the three circuits was simulated on the

transistor level using PSPICE and SPICE. The performance characteristics of the
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fabrication process were used to establish the simulation parameters for the tests. The test

results were compared and the three circuits were evaluated based on the simulation

results and expected area that they would require when implemented. The following is

a short description of each circuit.

The circuit in Figure 4.1 uses a total of thirteen transistors and a compensating

capacitor. Transistors QI, Q2, Q3, Q4 and Q5 are used to create a differential gain stage.

Q1 and Q2 actually provide the differential pair and Q3 and Q4 are configured as load

transistors. The bias current is established by Q5 and the bias point for Q5 is the result

of the bias circuit created by Q 11, Q12, and Q13. This particular bias arrangement was

done so as to allow for dynamic Vss and Vdd , that is, the proper bias point was

insensitive to changes in the voltages supplies. The differential gain stage is a differential

input but a single ended output. The single ended output feeds into Q9 and Q6. Q9 in

conjunction with QIO provides level shifting and an additional gain stage. Q8 and the

compensating capacitor provide feedback that maintains the stability of the amplifier. Q6

and Q7 provide a class-AB output stage, similar to a totem pole driver stage in bipolar

technology. Some advantages of this circuit are internal compensation and an internal

bias circuit which results in fewer external pins. It also can drive a larger load because

of its dedicated output stage. An obvious disadvantage is the increased number of

transistors. For a thorough analysis of the circuit see Ref. 9:pp 168 - 245.
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Figure 4.2 is the circuit diagram that represents another CMOS OA design. It is

very similar in design to the operational amplifier in Figure 4.1. In fact, the differential

input stage is identical and is also single ended on the output. Q6 and Q7 provide the

level shifting, the second gain stage and the final output. Q8 and Cc provide feedback

and are used to maintain stability. The bias circuit is established with Q9 and QIO. A

clear advantage of this circuit is that it uses only 10 transistors; of course, this results in

some trade offs. The bias circuit is now insensitive to variations in the positive voltage

supply but, it is sensitive to variations in the negative voltage supply. Also, the second

gain stage is driving the output and this prevents the amplifier from driving a very large

load. For a complete analysis of this circuit see Ref. 9:pp 168 - 245.
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The circuit diagram in Figure 4.3 represents another CMOS OA that was considered

for use in the microchip. This design is very similar to the two previous designs. It has

a differential input implemented with QI and Q2. Q3, Q4 and Q8 are arranged to provide

a load and to mirror the current established by Q5. The current through Q5 is set by Q6

when a load resistance is connected to Q6 at the Bias node. The differential stage has

a single ended output that is input to the level shifting, gain stage implemented by Q9 and

Q10. These transistors also provide the output stage. The Comp node provides a contact

for a compensating capacitor which can be placed between the output and the input to the

second gain stage. Some advantages to this design are the small number of transistors,

the ability to select different bias points and the ability to adjust bandwidth, slew rate and

stability by changing the compensating capacitor. Some disadvantages are the number

of extra pins required as well as only being able to drive relatively small loads due to the

output being taken directly from the secondary gain stage. For a more thorough

discussion and analysis of this amplifier see Ref. 10 pp: 61 - 70.
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B. SELECTION OF A CMOS OPERATIONAL AMPLIFIER DESIGN

After carefully simulating the circuits described above, a comparison of their

performance was made. Based on the simulation test results, it was decided to use the

design presented in Figure 4.1. This circuit demonstrated the best overall performance

of the three in terms of unity gain bandwidth, slew rate and phase margin. Of course, a

disadvantage is that it requires 13 transistors while the other two designs require only 10

transistors each. In a following section this will be shown to be insignificant due the

amount of area required for the internal compensating capacitor. The next step was to

produce a circuit layout using a tool called MAGIC.

The layout of the operational amplifier can have significant effects on the

performance parameters of the circuit. Affected parameters include rise time, overshoot,

high frequency response, sensitivity to process variations and offset voltage. The

amplifier arrangement should be such that the connecting line lengths are kept to a

minimum. By doing this it will help to attain desired step response and high frequency

response and reduce effects of input offset voltage. Other important factors to prevent

input offset voltages are to arrange the input stage transistors close to each other as well

as to their load transistors. Also, the input transistors should be in the same well and

have identical geometries. These steps will help to reduce the offset voltages caused by

process variations [Ref. 9:pp 513 - 524].

Since the amplifier geometry considerations are also compatible with layout

considerations to maintain compact and efficient usage of available area, ensuring the
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conditions stated above were implemented did not significantly complicate the design.

With these factors in mind, the process of laying out the operational amplifier was started.

The several variations of the implementation of the circuit in Figure 4.1 were designed

and the layout was produced to compare the different geometries and to attempt to

optimize all the layout considerations. Although a very good general pattern was

established by performance criteria, there was a significant amount of just looking at the

layout to envision possible alternatives that might improve the layout and optimize

utilization of available chip area. Thus, the first design was definitely not the final

design.

Eventually, a final design was decided on and Figure 4.4 shows the layout

geometry. The transistor labels in the figure correspond to the labels used in Figure 4.1.

It is clear from Figure 4.4 that the input stage transistors (Q1, Q2, Q3, Q4) are close to

each other and the input and load pairs have identical geometries. Also, the input lines

have no other signal lines crossing them and the input stage has good separation from the

output stage (Q6, Q7). The bias circuit (Q 11, Q12, Q13) is arranged along one side of

the amplifier and determined the width of the layout. Only a portion of the compensating

capacitor is shown in this figure, but, as will be shown later its dimensions determine the

length of the OA layout.
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C. THE COMPENSATING CAPACITOR DESIGN

One of the difficulties in using a process optimized for digital design became

apparent when trying to produce the desired size of compensating capacitor. There were

no procedures for laying out a relatively large capacitance while at the same time using

the smallest area possible. Therefore, a design had to be developed that would fill this

need. It was decided that a parallel plate capacitor would be used. Equation 4.1 can be

used to approximate the capacitance for a parallel plate design.

C=-S A ,,o(4.1)
t

In Equation 4.1 C is the capacitance, r is the dielectric constant of the insulating material

between the plates, t is the insulator thickness and A is the area of the parallel plate

capacitor. This model for approximating capacitance does not take into account the

affects of fringe capacitance which can have a significant contribution to parallel plate

capacitance. The effect of the fringing is to increase the capacitance. In the MOSIS

process there are three layers of conductor which can be used to build parallel plate

capacitors. Therefore, a three layer compensating capacitor was designed to provide the

maximum amount of parallel plate capacitance using the least amount of area. Figure 4.5

illustrates the structure of this three layer construction. This design was based on the fact

that the overall value of a capacitor is calculated by adding all the capacitances in

parallel. By using this principle the amount of capacitance per unit area was

approximately doubled. This effect is demonstrated in Figure 4.5 by the equivalent circuit
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diagram. For this fabrication process, typical values of metal I to metal 2 capacitance

was estimated to be 0.6X1O" pF/4m 2 to 1.OXlO pF/4m 2 . Estimated capacitance between

metal 1 and polysilicon was 0.8X104" pF/p•m 2 to 1.2X104 pF/pm2 and estimated

capacitance between polysilicon and the substrate was 0.8X10"' pF//m 2 to 1.2X 10'

pF/pMm2. From the circuit diagram and the estimates made of the capacitance, the

compensating capacitor design should provide between 1.4X10"' pF/pm2 and 2.2X10"'

pF/tm2 . These values were used to determine the amount of area required to achieve a

compensating capacitor value of 10 pF. This value was chosen as a typical value based

on discussions in Reference 9:pp 168 - 245.
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The layout depicted in Figure 4.6 is the amplifier including the compensating

capacitor. From this figure it is clear that the majority of layout area was used to create

the compensating capacitor. Despite this, there was still sufficient area to implement the

entire design. Although the compensating capacitors could have been taken off chip, this

would have required 16 pins just for compensation and that would have prevented

complete implementation of the design on the single microchip.

38



Compensating Capacitor (Cc) Layout Dimensions

Figui� 4.6 CMOS Operational Amplifier With Compensation Capacitor
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D. TESTING AND ANALYSIS

The layout tool, MAGIC, provides the capability of extracting a SPICE file directly

from the layout. This file is then filtered through another program, called ext2spice, that

puts the file in the proper format for SPICE. Then the process parameters, power supplies

and other necessary devices can be added to build a simulation of the circuit. The

resulting SPICE file is in appendix A. The simulation was run to determine unity gain

bandwidth, open loop gain, phase margin and slew rate. The plot contained in Figure 4.7

shows the magnitude and phase response and the plot in Figure 4.8 shows the slew rate.

From these simulation results it can be easily shown that the open loop gain was -10O

V/V, the unity gain bandwidth was -1.63 MHz and the phase margin was more than 800.

From Figure 4.8 the slew rate is -6 V/jps. Therefore, this amplifier design met all of the

requirements established in the first part of this chapter.
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V. THE SWITCHED CAPACITOR AND TRANSMISSION GATE

A. DESIGN OF THE SWITCHED CAPACITOR

The most important design consideration for the switched capacitors was that the

ratio of the capacitors, ot, as depicted in Figure 1.1 through Figure 1.4, be as accurate as

possible. The process being used does not provide a means to produce a very accurate

capacitance value but, there are techniques that can be used to produce capacitor ratios

that are very accurate. Accuracies of 0.1% or less can be achieved in the ratios of two

capacitors in a VLSI design [Ref. 9:pp 474 - 482].

An extremely effective technique used to construct capacitor layouts that provide

very accurate ratios and that are relatively insensitive to process variations is called a

common centroid geometry [Ref. 9:pp 474 - 482]. This technique is based on a layout

that uses a unit sized capacitor in the center of the design and then places the appropriate

number of unit sized capacitors connected in parallel around the perimeter of the center

capacitor. The value of the ratio is then determined by the number of capacitors

surrounding the center capacitor. It is a very accurate ratio because the unit size

capacitors are identical in layout area. If a fractional value is needed, one of the

perimeter capacitors can be reduced or enlarged to obtain the exact ratio. The process of

enlargement or reduction should be done in only one dimension, either width or length

but not both. Figure 5.1 depicts the common centroid geometry.
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Figure 5.1 Switched Capacitor Centnid Geometry
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The next step was to determine the size of the unit capacitor for implementation on

the VLSI circuit. A primary consideration was the amount of layout required. This

constraint resulted in the decision to construct a unit capacitor that was approximately lpF

in value. Again, it is important to remember that the accuracy of the capacitance is not

very good. The actual v,'alue could fall between 0.5pF and 2pF. This design employed

a parallel plate capacitor, Cp, using only metal 1 and metal 2 to form the plates. Figure

5.2 illustrates the design and also shows the parasitic capacitance, Cb , to the substrate and

the parasitic capacitance, Cm , from the metal routing that is created. As was shown in

Ref. 8:pp 43 - 68, this capacitance does not degrade the performance of the circuit due

to the stray insensitive topologies used.
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The final step was to implement the common centroid geometry with the proper

ratio, a = 6.11, which was determined by the closed loop gain, k = 100, from Ref. 8:pp

7 - 19. This design was for a maximally flat magnitude response for this particular closed

loop gain value. Using this fact the design layout in Figure 5.3 was produced. This

figure shows the unit capacitor in the center and the six perimeter capacitors, one of

which is slightly enlarged t' produce the exact ratio.
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B. DESIGN OF THE TRANSMISSION GATE

The transmission gate or pass gate acts as a switch in the CMOS technology. It is

designed using one PMOS transistor and one NMOS transistor with the drains connected

together and with the sources connected together. When a positive voltage, greater than

the threshold voltage, is applied to the gate of the NMOS transistor and a negative

voltage, greater than the threshold voltage, is applied to the gate of the PMOS transistor,

the transmission gate is on. This is equivalent to closing a switch. When the gate

voltages are reversed the transistors are turned off which is equivalent to opening a

switch. When the switch is closed the input signal should pass through the gate

unchanged and when the switch is open no signal should pass through the gate. Although

this is the ideal case there are some nonideal characteristics that must be considered.

Nonideal characteristics that can affect the performance of the circuit are the

parasitic capacitances associated with transistors and the on-channel resistance of the

transmission gate. The parasitic capacitances have already had their effects minimized

by the use of the stray insensitive topology. The on-channel resistance for a minimum

size transmission gate layout is on the order of several kilo-ohms. Clearly this amount

of resistance will have a significant affect on the signal that is being passed. Therefore,

a major design consideration was to reduce the on-channel resistance. Equation 5.1 shows

the relation of the on-channel resistance to the dimensions of the transistors. Rk is the

on-channel resistance and k is determined by: p, the surface mobility of the majority

carrier; to., the thickness of the oxide or insulating layer; e. and er, the dielectric constant
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L - (I.1)

of the insulating laye; V,, the threshold voltage of the transistor and V., the gate to source

voltage of the transistor. L and W are the length and width of the transistor gate. The

only parameters in the process that can be controlled by the designer are the width and

length of the transistor. From Equation 5.1, it is apparent that if the ratio of the length

to width of the transistor is reduced the on-channel resistance will decrease. There are

two ways to reduce the ratio. One way is to make the length as small as possible and the

second way is to increase the width of the transistor gate. Both of these methods were

used to decrease the on-channel resistance of the transmission gate.

After testing several designs, the effect of continuing to increase the gate width did

not reduce the on-channel resistance as much as when two transmission gate were

connected in parallel. That is, if a transistor with a gate width of 80,Am was compared

to two transistors in parallel with gate widths of 40tm, the parallel configuration had

between 20% and 30% less on-channel resistance. Therefore, this technique was used in

the design of the transmission gate to reduce the on-channel resistance while using the

least amount of area. Figure 5.4 shows the layout geometry of the transmission gate. The

following plot in Figure 5.5 illustrates the simulation of on-channel resistance verses

signal voltage for the transmission gate shown in Figure 5.4.
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From the graph in Figure 5.5 it can be seen that the on-channel resistance the

transmission gate varies between 82CI and 141.0 but, the on-channel resistance is less than

1000 for most of the range of the signal change. The signal voltage was only simulated

from -5 volts to +5 volts because that is the maximum signal that could be applied to this

circuit. In actual applications the voltages will be much smaller in magnitude.
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VL THE TWO PHASE NON-OVERLAPPING CLOCK

A. THE PURPOSE OF THE CLOCK

The need for the two phase non-overlapping clock comes from the use of switched

capacitors in the circuit design. The transmission gates discussed in Chapter V requires

a signal to control when and for how long the switch is opened and closed. Also, the

nodes that are connected to the transmission gate are switched alternately between two

different portions of the circuit depending on the circuit topology. There is also a need

for a small delay between one switch closing and one switch opening. This delay is

provided by the two phase non-overlapping clock circuit.

In order to switch the transistors of the transmission gate on and off, the inverse of

each phase is also required. The transmission gate that is controlled by the even phase

signal also requires the inverse of that signal and the transmission gate that is controlled

by the odd phase signal also requires the inverse of that signal. This is necessary because

the signal that turns off the NMOS transistor will not turn off the PMOS transistor in the

same transmission gate. The PMOS transistor needs a signal that is the inverse of the

control signal used in the NMOS transistor. The clock circuit that is used provides access

to both phases of the signals; therefore, no additional components are needed for proper

switching.
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B. DESIGN OF THE TWO PHASE NON-OVERLAPPING CLOCK

There are several designs available that will provide the clocking signals used in

switched capacitor circuits. The two phase non-overlapping clock is built using a latch

and then placing multiple inverters in the feedback path [Ref. 9:pp 516 - 518]. Figure 6.1

shows the circuit diagram and the waveforms that are produced by this circuit. The non-

overlapping phase gap is the result of the addition of the gate delay of the multiple series

connected inverters. The non-overlapping phases illustrated show a relatively large gap

between the transitions in the signal. This large gap was done only to demonstrate that

the signals are non-overlapping. The gap between phases produced by the circuit are

actually very small (i.e., nanosecond range).
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Figure 6.1 shows that the circuit was divided into two section for power distribution.

The purpose of separating the digital power lines and the analog power lines was to try

to isolate the large current spikes in the digital power lines from the analog power lines

thus, preventing noise from feeding into the analog portion of the circuit from the digital

portion of the circuit. This design consideration required providing separate pins for

analog power and for digital power. This will be illustrated further in chapter VII.

One of the characteristics of the digital circuit that needed to be considered was the

fan out of the circuit. A common rule of thumb is that the fan out of a single CMOS

stage should not exceed eight. That is, the signal driver stages for the two phases and

their inverses should drive only eight similar size transistors. The circuit being built

utilized 32 transmission gates. Half of the transmission gates were driven by the odd

phase clock signal and the other half of the transmission gates were driven by the even

phase clock signal. Therefore, it was decided to use two clock circuits in the design so

that each phase would be driving a maximum of eight transmission gates. This rule of

thumb assumes that the driver is similar in size to the transistors being driven, thus, the

stages of inverters were increased from the minimum size allowed by the technology in

the first stage, to four times the minimum size in the final driver stage. Figure 6.2 shows

the transistor level circuit diagram of the clock, while Figure 6.3 illustrates the layout

geometry of the two phase non-overlapping clock circuit.
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C. CLOCK CIRCUIT SIMULATION AND TESTING

Once the circuit was built the next step was to simulate the circuit to determine if

the correct output was being produced and to determine if the final stage would be able

to drive the required number of transmission gates. Figure 6.4 and Figure 6.5 show the

results of testing the circuit to determine that the correct clock signals were produced.

The resulting waveforms indicate the circuit performed as required. The next step was

to ensure the circuit would be able to drive the required number of transmission gates.
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To test the circuit under load, the PSPICE test file was modified so that each phase

of the clock was driving eight transmission gates. Figure 6.6 illustrates the performance

of the circuit while under a load. The switching speed requirements for this circuit dictate

that the design be able to handle single phase clocking rates of about 1MHz. This circuit

as simulated can easily handle a master clock rate of 10OMHz.
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Additional information gained from this simulation was an estimate of the amount

of current the circuit would draw. In CMOS circuits the amount of current used under

static conditions is very small, usually in the microamp range but, during signal transitions

in the circuit the amount of current usually reaches the milliamp range. The information

about the current drawn under load is then used to determine the size of the metal power

lines for the circuit. This information is important because if the power lines are made

too small then there can be a problem with electromigration. Electromigration is a

phenomena that results in an open circuit in the signal line and ultimately failure of the

microchip. The plot in Figure 6.7 shows the amount of current required during the

transition between phases in the clocking circuit. From these results, it is clear that the

power lines need to be able to carry at least 9mA of current. A conservative estimate for

how much current a metal line can carry is approximately O.SmA to l.OmA per micron

of metal width [Ref. I1 :pp 144]. Therefore, the power lines into each clocking circuit

were designed to total more than 9pim in width.
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VII THE COMPLETE CIRCUIT LAYOUT GEOMETRY

A. THE APPROACH TO THE OVERALL MICROCHIP DESIGN

This chapter deals with the design and methods used to complete the layout of the

eight operational amplifiers, thirty-two transmission gates, two clocking circuits and the

four groups of switched capacitors within the area available on the microchip. The basic

approach was to divide the area into four separate subcircuits. These subcircuits

corresponded to the four different stray insensitive composite operational amplifier

topologies being implemented. Each subcircuit was then arranged in the available area

according to some basic guidelines and with the requirement that each section match up

with the other three sections when placed together in the completed design.

B. GUIDELINES FOR CIRCUIT LAYOUT GEOMETRY

One of the difficulties when using a fully custom microchip production process is

the seemingly infinite number of ways the available area can be used to implement the

desired circuit. This being the case, there was a need to limit the possible ways the

circuit could be placed into the available area and at the same time avoid geometries that

would create a less capable design with undesirable characteristics. As was stated above,

this circuit had a logical division into the four separate CNOAs. This logical division of

the design did not conflict with other layout guidelines that were followed. Reference 9

pp. 513 - 524 provided the guidance to optimizing the arrangement of the circuit. The
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following paragraphs discuss the guidelines, their purpose and how the circuit was

arranged to follow these design considerations.

One of the problems that can arise in a chip which contains both analog and digital

components is that noise can be injected into the analog portion of the circuit from the

power, ground and clock lines. The power lines supplying the digital portion of the

circuit have large current spikes which correspond to the switching of the transistors in

the network. If the same lines are used to power the analog portion of the design these

current spikes would introduce noise into the analog power lines. This noise was

eliminated in the chip design by providing complete separation of the analog power lines

from the digital power lines. In addition, separate bonding pads leading to separate

external pins were provided for both analog and digital power supplies. The clock lines

can inject noise into the signal path through the gate to source and gate to drain

capacitance. However, this effect was minimized in this design because the process uses

a self aligned gate which results in a reduced gate to source and gate to drain capacitance.

The ground used in the design was only connected to the analog portion of the circuit.

Thus, the best way to keep noise from contaminating the system through the ground line

was to ensure that this pin was connected to a noise free external ground.

Another design guideline was to use the analog power lines to bias the last four

inverters of the clocking circuit. From Figure 6.1 it can be seen that the last four

inverters provide the even and odd phases of the two phase non-overlapping clock signals

and their inverses. Using the analog power lines for this portion of the design helps to

reduce the digital noise in the clock signals.
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In order to reduce the amount of noise coupled into the inverting input of the

operational amplifier, it was important to minimize the noise in the lines connected to

the inverting terminal. This was accomplished by ensuring the bottom plate of the

parallel plate capacitor was never connected to the inverting input. The bottom plate of

the parallel plate capacitor was constructed with metal I and the top plate was constructed

with metal 2. The bottom plate is closest to the substrate and a parasitic capacitance is

formed between the bottom plate of the capacitor and the substrate. This provides a path

for coupling substrate noise into the amplifier and this noise is most pronounced if the

bottom plate is connected to the inverting terminal of the amplifier. Also, to prevent

noise from coupling into the OA, the input node lines and other signal lines were

constructed to avoid crossing one another if at all possible. If this was not possible then

the layout was done to minimize the amount of overlap when signal lines and input lines

had to cross each other. An additional technique used when organizing the layout of

a chip, is to place identical components in the same physical area of the chip. Figure 7.1

is a diagram of the circuit layout which shows how the components were organized into

separate areas on the chip.
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C. CNOA AND ENTIRE CIRCUIT LAYOUT ORGANIZATION

The circuit layout guidelines described above were followed when determining the

layout geometry of the individual CNOA networks. The four different topologies

describec in Chapter II were constructed one at a time. Then the four layouts were

incorporated into a single design to which the contact pad circuitry and connecting metal

lines were added.

The circuit diagram presented in Figure 7.2 is a transistor level network that

represents the CNOA, TSCC2OA-2, implementation. This diagram does not include the

transistor level two phase non-overlapping clock circuit, but it does indicate where the

two phases and their inverses connect into this network. See Figure 6.2 for a transistor

level circuit diagram of the clock. The TSC_C2OA-2 will be used to illustrate the

implementation of the CNOAs. The other three CNOAs where implemented in a similar

manner.
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Figure 7.3 shows the layout geometry of TSCC2OA-2. This figure indicates where

all of the major components are in the circuit and it shows how the interconnections of

these components was accomplished. This basic geometry was used as the basis for all

four of the CNOA layout geometries.
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Figure 7.4 shows the layout geometry of the entire microchip, including all four

CNOAs, the clocking circuits, the amplifiers, the capacitors and the bond pads that make

up the pad ring, refer to Figure 7.1 for a general chip layout. Figure 7.4, also illustrates

the final design that was submitted for fabrication. The following is a list of labels

including a short description of their functions:

1. Analog Vdd - bond pad to the positive power for the analog circuit.

2. Analog Vss - bond pad to the agative power for the analog circuit.

3. Digital Vdd/Vss - bond pads for positive/negative power for the digital circuit.

4. Crlx, Cr2x, aCrix, aCr2x - provide access to place capacitance in parallel
with the on chip capacitors. If x = 1 it connects to TSCC2OA-1, x = 2
connects to mOFRC2OA-1, x = 3 connects to TSCC2OA-2, and x = 4
connects to mOFRC2OA-2.

5. -Vx - is the inverting input to the CNOA, x functions as described above.

6. +Vx - is the non-inverting input to the CNOA, x functions as described above.

7. Outx - is the output of the CNOA, x functions as described above.

8. TPx - provide access to an internal node, x functions as described above.

9. CLK - is the bond pad that supplies the external Master Clock input.

10. GND - is the bond pad that connects to an external ground.
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Figure 7.4 Complete Mficrochip Layout Geometry As Submitted For Fabrication
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D. SIMULATION AND TESTING RESULTS

The microchip was manufactured and received back from the foundry after

approximately eight weeks. Four, forty pin, dual in line packages were received. The

initial step taken in testing was to connect the positive power supply, the negative power

supply and the ground line. Next the power supplies were gradually increased in 0.25

Volt steps until the power supplies reached the + 5 Volt and -5 Volt design levels.

During this initial power up stage the amount of current drawn was constantly monitored

for any indications of latchup. The primary indicators of latchup are a sudden large surge

in current, an extremely hot package, smoke emanating from the package or a

combination of all of these indication. This initial power up of the chip did not indicate

any latchup problems or Vdd to Vss shorts or power to ground shorts.

The next stage of the testing was to connect the CNOAs in a finite gain negative

feedback configuration, add the master clock signal and the input signal. This

configuration resulted in improper circuit performance and latchup. The latchup was

indicated when the power supplies current increased to its maximum limit. Fortunately,

the amount of current was not sufficient to cause chip destruction. After several attempts

to connect the circuit, a configuration was discovered that allowed for circuit operation

without causing latchup. Unfortunately, the first chip was destroyed will trying to come

up with a configuration that would allow for operation of the circuit without latchup.

To prevent chip destruction, the power supplies were set to limit its maximum

current to 100 mA. This was determined to be a safe level of current that would not
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result in chip destruction if latchup occurred. At the first sign of latchup the power

supplies were turned off and the clock and input signal were also turned off. Initially, the

circuit was very sensitive to changes in the master clock input. Rapid changes to the

clock almost always caused the chip to latchup. Therefore, the clock frequency was

changed with the clock disconnected from the circuit. After gaining some experience

working with the circuit the latchup problem became manageable.

The next step was to set up the CNOAs in finite gain negative feedback

configuration to investigate the gain bandwidth product of the circuit. After some trial

and error a unity gain negative feedback configuration was selected to allow for a

relatively large input signal without causing the output to be limited by the power

supplies. The initial results indicated that the output had a significant amount of noise

which occurred at the same frequency as the clock. In an attempt to filter out the high

frequency noise caused by the clock a 2.2 nF capacitor was placed on the output. This

was effective in attenuating the clock noise but it also had the undesirable effect of

limiting the bandwidth of the amplifiers. This resulted in an inability to determine the

actual gain bandwidth product of the circuit. To confirm that this was the correct

interpretation of the observed results a PSPICE simulation was performed on a single

amplifier with a 2.2 nF capacitor on the output. The results of this simulation are shown

in Figure 7.5.
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SPICE file created to test singje CMOSAMP3 withi resistor
Date/Timne run: 10/09/9 14:43:37 Temperature: 27.0

200-

150

100

%6dB Open Loop. Gain.
dB

50 PaeMr

.20.5

-50

-100
1.0h 10h 100h 1.O1(h 11(h 1001(h 1.OMh lOMh l00Mh

odbXv(202)/v(21 1)) o p(v(202))
Frequency

Figum 7.5 CMOS Amplifier Frequency Response With A 2.2 nF Capacitive Lead
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There are several important aspects to note concerning this simulation. First, the

simulation was performed with the SPICE parameters that were determined and provided

by the manufacturer for this particular fabrication run. Second, the simulations performed

previously were done with less complete and less up to date simulation parameters.

Third, the simulation gain bandwidth product of 165 KHz was very close to the 130 KHz

that was observed in the laboratory testing. It is also important to note that there was

very little variation among the three remaining chips with respect to their gain bandwidth

products.

Figure 7.6 illustrates the observed output from laboratory testing of TSC_C2OA-2.

The input was a 0.1 Volt peak sine wave at 10 kHz and the circuit was placed in a

negative feedback, finite gain of 10 Volts/Volt. This result is representative of the data

obtained for all of the chips and the CNOAs tested. The results illustrated in Figure 7.7

are from a PSPICE simulation that was set up to resemble as close as possible the actual

test circuit in the laboratory. The SPICE parameters used were those supplied from the

manufacturer. The simulation results are almost identical to those observed in the

laboratory.
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data so that the 10MHz clock noise that was observed in the
laboratory is not represented in this plot.

Figure 7.6 Laboratory Test Results
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SPICE file rated to test TSCC2OA.2 with switch cpadto
DateF•ne run: 10/11/93 1329:49 Tenperakre: 27.0

15V

Input = O.tV sin @1IOKHz 0ut=-10XInpu1.0V . . . . . . . . . . . . . .

0 .5 V. . . . . . . . . . . . .

-0.5V. . . . . . . . . . . . . . . . . . .

Frequency = 1OKHz

-I.0V. . . . . . . . . . . . . .

-1.5V ...

Os 2Ous 40us 6Ous 8Ous 1O~us
oV(7)

Tom

Figure 7.7 PSPICE Simulation Results Of Laboratory Cirnuit
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L ANALYSIS AND CONCLUSIONS

The results of the testing indicate that the overall circuit performance was

significantly worse than was indicated by the prefabrication simulations. The primary

cause of this deficiency in performance was due to the digital noise that was feeding into

the analog portion of the circuit. To remove the clock feed through noise a low pass filter

was connected to the output. This resulted in a cleaner output, but it also prevented

accurate determination of the gain bandwidth product and the slew rate of the CNOAs.

There are several reasons for the less than expected performance of the circuit. The

following is a discussion of the most likely causes of this limited performance.

The most significant problem with this chip was the extreme digital noise that was

feeding into the analog signal path. This was caused by several factors. First, there was

not enough attention given to isolating the digital noise. Additional design modifications

such as grounded (analog ground) guard rings surrounding the amplifier differential pairs

would have helped to isolate this high gain input from the digital noise in the substrate.

Second, the desire to reduce the on channel resistance of the transmission gates resulted

in a substantial increase in the gate to drain and gate to source capacitance. These

capacitances provided a means for coupling the digital clock signals into the analog signal

path. This could have been prevented by using minimum sized transmission gates. The

amount of the added impedance would not be large enough to affect the accuracy of the

ratio of the capacitors. Third, more simulations should have been done using more up to

date simulation parameters. The desire to meet a fabrication deadline resulted in
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accepting simulations that were not as thorough as would have been desired. Fourth, the

process being used was optimized for digital circuits. Therefore, the noise reduction is

not as critical because digital circuits are usually designed with large noise margins and

can operate with a level of noise that would be extremely detrimental to the performance

of an analog circuit. This process also created some inconsistencies in the stated purpose

of using switched capacitors to replace resistors in VLSI technology. One reason for

using switched capacitors was to reduce the area that would be required to produce a

comparable resistor. Thiq process did not provide any layers that could be used to create

accurate, large capacitors. The result was that the capacitors required most of the layout

area and their accuracy was poor. This could only be corrected by using a fabrication

process optimized for analog circuits. Finally, the use of two clock circuits created twice

as much noise as one clock circuit. The need for two clock circuits resulted from the

need to drive large transmission gates so the use of minimum sized transistors would

eliminate this requirement.

Another consideration, not directly related to improving chip performance, that

should have been considered was the learning curve involved with an initial design. It

would have been more prudent to reduce the number of CNOAs placed on the chip and

in return provide access to more of the internal nodes. This would have allowed for more

indepth testing and better analysis of any short falls in performance. Additionally, the

unused area would have provided room to place a single amplifier on chip that could have

been tested independent of the switched capacitor circuit. This would have allowed for

analysis and evaluation of the operational amplifier itself, to determine if the design
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should be modified. This was the first analog VLSI chip to be manufactured at the Naval

Postgraduate School using this process. The experience gained from this chip fabrication

was used to design and produce a second chip. The follow on design will be discussed

in the next chapter.
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VUL THE LOW NOISE ANALOG CMOS PROCESS

A. CHARACTERISTICS AND ADVANTAGES OF THE ANALOG PROCESS

One of the reasons the first microchip did not perform as well as desired was due

to the fact that the process used for fabrication was optimized for digital circuits.

Although this design incorporated both digital and analog elements, the performance of

the analog circuits were more crucial to the overall performance of the CNOA. Therefore,

a process optimized for analog applications is preferable to a digital process. Also, it is

important to note that the performance requirements for the digital portion of the network

is not as stringent as the performance limits of the digital CMOS process. Thus, the

reduction in performance of the digital circuit built in an analog process will not affect

the overall performance of the network. The low noise analog process was not chosen

for the fabrication of the first microchip because, the process was unavailable at that time.

Another important advantage of the analog process was the capability to build

accurate capacitors (10%) and use smaller layout for the same size capacitor built in the

digital fabrication process. This was made possible by access to an additional polysilicon

layer called polysilicon two or electrode. This layer was not available in the digital

process. Although it can be used to produce transistors, the primary purpose of the

second layer of polysilicon was to provide an efficient means to build parallel plate

capacitors. In fact, the plate to plate capacitance of the polysilicon layers provides an

order of magnitude increase over the metal to metal capacitance available in the digital
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process. This resulted in much smaller layout area for the capacitors, as well as, much

more accurate capacitance values.

Another significant advantage of the analog process is the emphasis on noise

reduction in optimizing the fabrication process. The most significant problem with the

first microchip was the extreme amount of noise that contaminated the signal path.

Design changes that will be discussed later can prevent some of the noise injection but,

it is also important to have a fabrication process designed to keep noise out of the signal

path.

B. REDESIGN OF THE CNOA FOR THE NEW PROCESS

It was necessary to redesign all of the components of the first microchip except for

the two phase non-overlapping clock circuit. There were several reasons that made the

redesign imperative. The primary reason was due to the new process. In order to take

advantage of the new capabilities offered by the process, the amplifier had to be modified.

The basic circuit for the amplifier remained the same. The significant reduction in the

size of the compensation capacitor made it possible to increase the size of the transistors

in the amplifier. Increasing the size of the transistors improved the open loop gain as

well as the load capability of the amplifier. Another change to the amplifiers was the

addition of guard rings around the differential, high gain, input transistors as well as the

transistors acting as current sources for the gain stages. The guard ring is a diffusion

layer that is heavily doped with the same type of dopant as the substrate. This results in

a good conductive connection to the substrate. The guard ring is then connected to signal
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ground and functions to draw away stray currents from the substrate that could inject

noise into the circuit. Figure 8.1 shows the layout of the redesigned amplifier. Figure

8.2 is a PSPICE plot of the open loop frequency response. For a circuit diagram of the

amplifier refer to Figure 4.1.
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"- SPICE fe reated for drcuat anmp

Datefnerun: 11M2W3 2028.06 Temperature: 27.0
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Figure 8.2 Open Loop Frequency Response Of The Amplifier
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Another noise reduction technique in the new design was the use of a minimum

sized transmission gate to replace the much larger transmission gate of the original design.

This results in minimization of the gate to drain capacitance and the gate to source

capacitance. Reduction of these capacitances is important to eliminate or at least

significantly reduce the clock feed through problem experienced in the first microchip.

Clock feed through was probably the largest contributor to the noise in the signal path on

the previous design as mentioned before.

A major change in the second design was a decision to use a more conservative

overall layout. The CNOAs that performed the best in the first design were the

TSCC2OA-2 and the mOFRC2OA-2. These were the only two designs implemented

on the new chip. Also, separate isolated single amplifiers were placed on the chip and

access was provided to their inputs and outputs for testing purposes. In addition to this,

all four phases of the clock were connected to output pins so they could be observed and

access was provided to all of the significant nodes on the CNOAs.

Finally, one additional feature was added to the design. This new feature provides

for programming a, the ratio between the two switched capacitors. The implementation

uses 4 digital lines that allow for selection of 16 different ratios, from 1 to 16, using a

simple binary coding scheme. The programming could be done manually or by using

microprocessor controlled signals or some other automatic control device. The addition

of the programmable capability required very little additional chip area due to the

improved capacitors design. Figure 8.3 shows the layout geometry of the new microchip

illustrating the applications implemented. Figure 8.4 illustrates the programmable portion
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of the microchip and its functionality. The following is a list of labels including a short

description of their functions:

I. Pads Analog Vdd and Vss - pads that supply power all the bond pads.

2. Analog Vdd and Vss - provide power to the analog portion of the circuit.

3. Sxx - are the eight programming pads, each CNOA requiring four.

4. OUTx - are the output pads for the CNOAs and the single OAs.

5. -Vx and +Vx - are the inverting and non-inverting inputs to the CNOAs and
OAs.

6. P1, P2 and the Inverses - are output pads for the two phase clock.

7. Digital Vdd and Vss - provide power to the digital portion of the circuit.

8. CLK - master clock input used to drive the two phase clocking circuit.

9. Vxx - internal test point for the CNOAs.
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Figure 8.3 The Low Noise Analog Micmchip Layout Geometry
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Binary Truth Table

Binary Coding For Programming a
S3  S2 S1  So alpha value

0 0 0 0 1
0 0 0 1 2
0 0 1 0 3
0 0 1 1 4
0 1 0 0 5
0 1 0 1 6
0 1 1 0 7
0 1 1 1 8
1 0 0 0 9
1 0 0 1 10
1 0 1 0 11
1 0 1 1 12
1 1 0 0 13
1 1 0 1 14
1 1 1 0 15
1 1 1 1 16

digital lines controlling
alpha selection Note: The switches close

1 i1 on a logic 1 and open on
So, s l  S2 S3 a logic 0.

OR 1  0 R _r7 4CRj-J j--.-A J

! I ___

Figure 8.4 Troth Table And Circuit Diagram Of The Programmable Capacitor Ratio a
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C. SIMULATION AND TEST RESULTS

One of the important areas that needed to be emphasized in the new design was

simulation. Based on the experiences of the first design, it was clear more reliable and

more accurate predictions of the overall circuit performance were needed. Using the

laboratory observed results as a benchmark, several simulation formats were evaluated to

determine which simulation produced results that most closely resembled the observed

results. It is important to note that these simulation formats did not alter the structure of

the circuits. The changes in the simulation were in the format of the simulation program

and in the parameters used to define the NMOS and PMOS transistors.

As was mentioned in Chapter VII, the simulations for the original design were done

with SPICE parameters which were not up to date and which did not include all of the

process parameter specifications. Therefore, some of the parameters used were default

values. When the first design was received back from the manufacturer, the

documentation that accompanied the chip included the SPICE parameters developed from

the fabrication run. These parameters were more up to date and much more complete

than the parameters available for the original simulation. Having the actual fabrication

parameters resulted in insignificant changes to the digital circuit performance but, the

effect on the analog simulation was very significant. Fortunately, the new analog process

provided SPICE fabrication parameters from a process run as of July 1993.

Another significant problem which caused difficulties in the simulation was the

inability to create a simulation file in which PSPICE could reliably calculate a bias point
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prior to the transient analysis. By relaxing the tolerances of the calculations to establish

a bias point, the simulation would advance to completion but, the results were suspicious

and did not reflect observed results. A solution to this problem was to isolate the

components of the circuit into subcircuits and then connect the subcircuits together for

simulation. This technique did not result in any functional changes to the actual circuit

but, it did provide for a format that allowed PSPICE to calculate a bias point without

reducing the tolerance requirements. The new simulation format produced results

representative of the original design performance observed in laboratory testing. Based

on that experience, it was determined that this format would provide very accurate

simulations of the new design. Confidence in the new design's ability to meet the desired

performance criteria was increased and the simulations provided insights into design

changes that would enhance the performance of the overall design. Figure 8.5 and Figure

8.6 contain PSPICE plots of the simulation results of gain bandwidth product

determinations. Based on these results the gain bandwith product of the TSCC2OA-2

was estimated to be 4 MHz. The input signal was a 0.1 Volt peak sine wave at 300 KHz

and 400 KHz respectively.
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Figue 8.5 Bandwidth Simulations For TSC_C2OA-2 at 300 KHz
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Daef"ime run: 11/04/93 15:52.34 Temperature: 27.0
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Figure 8.6 Bandwidth Simulations For TSCC2OA-2 at 400 KHz
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IX. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis represents the first CMOS stray insensitive switched capacitor network

to be designed, simulated, fabricated and laboratory tested at the Naval Postgraduate

School. VLSI technology and a fully custom process was utilized to provide the

maximum design flexibility. Although the test results from the first microchip design did

not perform up to expectations, it did provide enough information to demonstrate proof

of concept. Information and experience gained from the fabrication and testing of the first

design were used to improve the design of the second microchip. Also, the availability

of a VLSI process optimized for low noise analog circuits and increased emphasis on

design considerations should substantially reduce the noise in the analog signal path.

The scope of this work covers the complete design, simulation, fabrication, testing

and resimulation of the first generation stray insensitive switched capacitor CNOAs. The

scope also covers the knowledge and experience gained from this design that has

proceeded the design, simulation and fabrication of the second generation stray insensitive

switched capacitor CNOAs. These designs show great promise for use in filtering

applications and as building blocks for neural networks.
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B. RECOMMENDATIONS FOR FUTURE RESEARCH

There are several areas that could be pursued as follow on projects. The

development of s domain transfer functions and transformation into the z domain would

provide for more indepth analysis of the circuits stability. This is also necessary so that

sensitivity analysis of the network could be performed. Use of these analysis techniques

would be very useful when trying to determine the effect of possible design changes.

This would also provide for insight into where design changes should be made to improve

the circuit's performance.

Another area that could be pursued is to further improve the CMOS operational

amplifier. The open loop gain could be improved by an order of magnitude by using

cascode loading on the differential input pair. Also, the output impedance could be

reduced by placing several output driver stages in parallel. This would also improve the

drive capability of the OA. In addition, the two operational amplifiers in the CNOAs

could be optimized for bandwidth and slew rate which would improve the performance

of the design.

Improvements could be made in the circuit simulation, especially in the early design

evaluations, by purchasing a software package called Switcap. This package is

specifically designed for simulating switched capacitor networks. This would reduce the

length of time required for simulations and would provide a more flexible tool when

attempting to investigate the frequency response of the circuit.

Finally, if the second microchip demonstrates that the noise problems have been

solved, then a follow on project could be to optimize the layout area of the design. This
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would be important to provide more capability within the relatively small layout area.

Also, it is expensive to not utilize the chip area in the most efficient manner possible.

The optimization of layout area would allow tor more functionality and is always an

important goal for VLSI circuit implementations.
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APPENDIX A

A. PSPICE Simulation File For Figunm 4.7 and Figure 4.8

**SPICE file created for circuit cmosamp3
**Technology: scmos

"* SPICE3C PMQS and NMOS model level 2 nominal paramters,
"* derived from comner parameters above.

.MODEL npf PMOS(LEVEL=2 VTO=-O.75 TOX=400E-l0 NSUB=6.OE+15
+ XJ=O.05U LD=0.20U UO=255 UCRIT-O.86E5 UEXP=O0.29 VMAX=3.0E4
+ NEFF=2.65 DELTA=1.0 RSH=101 CGSO=1.9E-10 CGDO=1.9E-1O
+ CJ=250U CJSW=350P MJ=0.535 MJSW=0.34 PB=0.8)

.MODEL nnf NMOS(LEVEL=2 VTO=+0.775 TOX=400E-1O NSUB=8.OE+15
"+ XJ=0.15U LD=0.20U UO=650 UCRIThO.62E5 UEXP=O0.125 VMAX=5.1E4
"+ NEFF=4.0 DELTA= 1.4 RSH=36 CGSO= 1.95E- 10 CGDO=1 .95E- 10
"+ CJ=1951J CJSW=SOOP MJ=0.76 MJSW=0.30 PB=0.8)

*Power Supplies
VDD 100 0 5
VSS 105 0 -5
VINVERT I1I1 0 AC 0. 000 1
VNONINVERT 1 10 0 0
*VIN I111 0 PULSE(1 -I 4us 2ns 2ns IlOus 2Ous)

*Feedback
*RIF 8 2 50K
*RIN 12 2 500
*CLD 102 105 1lOP
CC 106 102 1lOP

MO 100 101 102 100 npf L4.OU W=66.OU
MI 103 103 100 100 npf L4.OU W=24.O'U
M2 102 104 105 105 nnf L4.OU W=20.OU
M3 100 101 104 105 nnf L=7.OU W=4.OU
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M4 106 105 101 100 npfL=10.0U W=10.0U
M5 104 107 105 105 nnf L=4.OU W=28.OU
M6 100 108 101 100 npfL=4.0U W=24.OU
M7 108 108 100 100 npf L=4.0U W=24.OU
M8 103 103 107 105 nnfL=186.OU W=4.OU
M9 109 107 105 105 nnf L-4.0U W=21.OU
M1O 109 110 101 105 nnf L=4.OU W=26.OU
MIl 108 111 109 105 nnfL=4.OU W=26.OU
M12 105 107 107 105 nnf L=4.OU W=II.OU
CO 106 102 5103F
** NODE: 111 = VIN-
** NODE: 110 = VIN+
CI 109 105 87F
** NODE: 109 = 6_186_159#
C2 107 105 54F
** NODE: 107 = 6_178_163#
C3 108 105 106F
** NODE: 108 = 6 228_77#
C4 105 105 181F
** NODE: 105 = Vss
C5 104 105 77F
** NODE: 104 = 6_186_89#
C6 100 105 263F
** NODE: 100 = Vdd
C7 102 105 161F
** NODE: 102 = OUT
C8 106 105 2913F
** NODE: 106 = 6329_161#
C9 103 105 157F
** NODE: 103 = 6286_77#
CIO 101 105 165F
** NODE: 101 = 6_218_159#

*Simulation parameters for frequency response

.AC DEC 20 1 100MEG

*Simulation parameters for transient response
*.TRAN .2us 24us

.PROBE

.END
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B. PSPICE Simulation File For Figure 6.4 dimugh Figure 6.7

**SPICE file created for circuit nvclk2
**Technology: scmos

MODEL npf PMOS(LEVEL=2 VTO=-0.75 T0X=400E-10 NSUB=6.OE+15
"+ XJ=0.05U LD=O.20U UO=255 UCRIT=0.86E5 UEXP=-0.29 VMAX=3.0E4
"+ NEFF=2.65 DELTA=1.0 RSH=101 CGSO=1.9E-1O CGDO=1.9E-10
"+ CJ=250U CJS W=3 SOP MJ=O.535 MJSW=0.34 PB=0.8)

MODEL nnf NMOS(LEVEL=2 VTO=+0.775 TOX=400E-10 NSUB=8.OE+15
"+ XJ=O. I5U LD=O.20U UO=650 UCRJT=0.62E5 UEXP-0. 125 VMAX=5.1IE4
"+ NBFF=4.O DELTA= 1.4 RSH=36 CGSO=1 .95E- 10 CGDO=1 .95E-1 0
"+ CJ=195U CJSW=5OOP MJ=0.76 MJSW=O.30 PB=0.8)

*Power Supplies
VDD 102 0 5
VSS 103 0 -5
VIN 1 10 0 PULSE(5 0 0.l1us 2ns 2ns 0.O5us 0.l1us)

MO 100 101 102 102 npf L2.OU W=28.OU
MI 103 101 100 103 nnf L=2.OU W=12.OU
M2 101 104 102 102 npf L=2.OU W=28.OU
M3 103 104 101 103 nnf L=2.OU W=12.OU
M4 104 105 102 102 npf L2.0U W14.OU
M5 103 105 104 103 nnf L=2.OU W=6.OU
M6 105 106 102 102 npf L=2.OU W=14.OU
M7 103 106 105 103 nnf L2.OU W=6.OU
M8 102 107 108 102 npf L2.OU W=7.OU
M9 108 109 106 102 npf L=2.OU W=7.OU
M1O 106 107 103 103 nnf L2.OU W=3.OU
Mll 106 109 103 103 nnf L2.OU W=3.OU
M12 107 110 102 102 npf L=2.OU W=7.OU
M13 103 110 107 103 nnf L=2.OU W=3.OU
M14 109 111 102 102 npf L2.OU W=28.OU
M15 103 111 109 103 nnf L=2.OU W=12.OU
M16 111 112 102 102 npf L=2.OU W=28.OU
M17 103 112 111 103 nnf L2.OU W=12.OU
MIS8 112 113 102 102 npf L=2.OU W=14.OU
M19 103 113 112 103 nnf L=2.OU W=6.OU
M20 113 114 102 102 npf L=2.OU W=14.OU
M21 103 114 113 103 nnf L=2.OU W=6.OU
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M22 102 110 115 102 npf L=2.0U W=7.OU
M23 115 100 114 102 npfL=2.OU W=7.OU
M24 114 110 103 103 nnfL=2.OU W=3.OU
M25 114 100 103 103 nnf L=2.0U W=3.OU
** NODE: 115 = 2_input nor 1/6_33_14#
CO 114 0 59F
** NODE: 114 = inverter2_0/IN
Cl 113 0 68F
** NODE: 113 = inverter2_I/IN
C2 112 0 68F
** NODE: 112 = inverter4_2/IN
C3 103 0 246F
** NODE: 103 = Vss

C4 1090 119F
** NODE: 109 = P2

C5 Ill 0 IIIF
** NODE: Il1 = NP2

C6 110 0 25F
** NODE: 110 = CLK
** NODE: 108 = 2_input nor 0/6_33_14#

C7 107 0 47F
** NODE: 107 = inverter_8/OUT
C8 106 0 59F
** NODE: 106 = inverter2_2/IN
C9 105 0 68F
** NODE: 105 = inverter2_3/IN
CIO 104 0 68F
** NODE: 104 = inverter4_0/IN
ClI 100 0 118F
** NODE: 100 = P1
C12 102 0 316F
** NODE: 102 = Vdd
C13 101 0 113F
** NODE: 101 = NPI

*Simulation parameters for transient response

.TRAN .O0us lus
PROBE

.END
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C. PSPICE Simulation File For Figuiw 7.5

SSPICE file created for circuit cmosamp3
**Technology: scmos

"* SPICE3C PMOS and NMOS model level 2 nominal paraznters,
"* derived from comner parameters above.

.MODEL nnf NMOS (LEVEL=2 P191=0.600000 TOX=4.1300E-08 XJ=0.200000U
TPG--1
"+ VTO=0.7108 DELTA=4.8120E+00 LD=2.9230E-07 KP-4.71 iSE-OS
"+ UO=563 .5 UEXP= 1. 5690E-0 1 UCRIT 1 .0980E+05 RSH=2.643 OE+0 1
"+ GAMMA=0.56 17 NSUB=6.6450E+1 5 NFS=2.060E+1 I VMAX=6.4920E+04
"+ LAMBDA=3 .2380E-02 CGDO=3 .6659E-1 0 CGSO=3 .66S9E- 10
"+ CGBO=3 .731 4E- 10 CJ= 1.0789E-04 MJ=0.6654 CJSW=4.5280E-1 0
"+ MJSW=0.310750 PB=O.800000)
"* Weff = Wdrawn - DeltaW
"* The suggested DeltaW is -3.9960E-07

.MODEL npf PMOS (LEVEL=2 PHI=0.600000 TOX=4.1300E-08 XJ=0.200000U
TPG=-l
"+ VTO=-0.7905 DELTA=2.73 OOE+00 LD=2. 8650E-07 KP=2. 1087E-05
"+ UO=252. 2 UEXP--2.6920E-0 I UCRITh=4. 6950E+04 RSH=7.3 71 OE+0 I
"+ GAMMA=0.63 79 NSUB=8. 5700E+1 5 NFS=2. 770E+1 1 VMAX=9.9990E+05
"+ LAMBDA=4.41I30E-02 CGDO=3 .5932E-1 0 CGSO=3 .5932E- 10
"+ CGBO=4.3195E-10 CJ=2.5057E-04 MJ=0.5508 CJSW=2.8373E-10
"+ MJSW=0.273554 PB=0.800000)
"* Weff = Wdrawn - DeltaW
"* The suggested DeltaW is -4.6260E-07

*Power Supplies
VDD 10 5
VSS 3 0 -5
VINVERT 2 0 AC 0.0001
VNONINVERT 40 0
*VIN 2 0 PULSE(1 -1 4us 2ns 2ns lOus 2Ous)

* Feedback
*R 8 2 50K
*RIN 12 2 500
*RBIAS 8 3 50K
CLD 8 3 10P
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** NODE: 0 = GND

** NODE: I = Vdd

** NODE: 2 = Error
MI 5 2 7 3 nnf L=8.OU W=200.OU
M2 6 4 7 3 nnf L=8.0U W=200.OU
M3 5 5 1 1 npf L=10.0U W=60.OU
M4 6 5 1 1 npf L=10.OU W=60.0U
M5 7 10 3 3 nnf L=10.0U W=53.OU
M6 8 6 1 1 npf L=8.OU W=320.OU
M7 8 9 3 3 nnf L=7.0U W=100.OU
Mg 6 3 21 1 npf L=10.OU W=10.OU
M9 1 6 9 3 nnf L=176.OU W=10.OU
M10 9 10 3 3 nnf L=10.OU W=71.OU
MI I I I1 11 npfL=10.OU W=66.OU
M12 11 111 0 3 nnf L=484.OU W=10.OU
M13 10 10 3 3 nnf W=27.OU L=10.OU

*Compensation capacitor

CC 21 8 10P

*Simulation parameters for frequency response

.AC DEC 20 1 100MEG
*.TRAN .2us 24us

.PROBE

.END

D. PSPICE Simulation File For Figure 7.7

** SPICE file created to test TSCC2OA-2 with switch capacitors

.SUBCKT OPAMPI 110 111 100
*INVERTING INPUT 11
*NONINVERTING INPUT 1 10
*OUTPUT 100

*N29T SPICE LEVEL 2 PARAMETERS

.MODEL npf PMOS(LEVEL=2 VTO=-0.75 TOX=400E-10 NSUB=6.OE+15
+ XJ=0.05U LD=0.20U UO=255 UCRIT=0.86E5 UEXP=0.29 VMAX=3.0E4
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"+ NEFF=2.65 DELTA=1 .0 RSH=101 CGSQ=1 .9E-10 CGDO=1 .9E-1 0
"+ CJ=250U CJSW=350P MJ=0.535 MJSW=0.34 PB=0.8)

.MODEL nnf NMOS(LEVEL=2 VTO=+0.775 TOX=400E-10 NSUB=8.OE+15
"+ XJ=0.15U LD=0.20U UO=650 UCRIT=0.62E5 IJEXP=0.125 VMAX=5.1E4
"+ NEFF=4.0 DELTA=1.4 RSH=36 CGSO=1.95E-10 CGDO=1.95E-10
"+ CJ=195U CJSW=500P MJ=0.76 MJSW=0.30 PB=0.8)

*.MODEL nnf NMOS (LEVEL=2 PHI=0.600000 TOX=4. 1 30E-08 XJ=0.200000U
TPG=1
*+ VTO=0. 7108 DELTA=4. 81 20E+00 LD=2.9230E-07 KP--4.71 15E-05
*+ UO=563 .5 UEXP= 1. 5690E-0 1 UCRIT= 1.0980E+05 RSH=2.6430E+O 1
*+ GAMMA=0.5617 NSUB=6.6450E+1 5 NFS=2.060E+1 1 VMAX=6.4920E+04
*+ LAMBDA=3 .23 80E-02 CGDO=3 .6659E- 10 CGSO=3 .6659E- 10
*+ CGBO=3 .731 4E- 10 CJ= 1.0789E-04 MJ=0.6654 CJSW=4. 5280E- 10
*+ MJSW=0.3 10750 PB=0.800000)
* Weff = Wdrawn - DeltaW
* The suggested DeltaW is -3.9960E-07

*.MODEL npf PMOS (LEVEL=2 P111=0.600000 TOX=4. 1 30E-08 XJ=0.200000U
TPG=- I
*+ VTO=-0.7905 DELTA=2. 7300E+00 LD=2.8650E-07 KP=2. 1087E-05
*+ UO=252.2 UEXP=2.6920E-0 I UCRiIT=4.6950E+04 RSH=7.371 OE+O 1
*+ GAMMA=0.6379 NSUB=8.5700E-s-15 NFS=2.770E+1 I VMAX=9.9990E+05
*+ LAMBDA=4.41 30E-02 CGDO=3.5932E-10 CGSO=3.5932E-1 0
'*+ CGBO=4.31I95E-1 0 CJ=2.5057E-04 MJ=0.5508 CJSW=2.8373E-10
*+ MJSW=0.273554 PB=0.800000)
"* Weff = Wdrawn - DeltaW
"* The suggested DeltaW is -4.6260E-07

*Power Supplies
VDD 102 0 5
VSS 105 0 -5

MO 102 101 100 102 npf L=4.OU W=66.OU
MI 103 103 102 102 npf L4.OU W=24.OU
M2 100 104 105 105 nnf L=4.OU W=20.OU
M3 102 101 104 105 nnf L=70.OU W=4.OU
M4 106 105 101 102 npf L=10.OU W=1O.OU
M5 104 107 105 105 nnf L4.OU W=28.OU
M6 102 108 101 102 npf L=4.OU W=24.OU
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M7 108 108 102 102 npf L=4.OU W=24.0U
M8 103 103 107 105 nnf L=186.OU W=4.OU
M9 109 107 105 105 nnf L=4.OU W=21.OU
MIO 109 110 101 105 nnf L=4.OU W=26.OU
MI 108 111 109 105 nnf L=4.0U W26.OU
MI 2 105 107 107 105 nnf L=4.OU W=I1LOU

CO 106 100 7029F
CI 109 105 87F
C2 107 105 54F
C3 108 105 106F
C5 104 105 77F
C6 100 105 306F
C7 102 105 165F
C8 106 105 2874F
C9 103 105 157F
CIO 101 105 16SF

.ENDS OPAMPI

.SUBCKT CLOCK 312 300 311 301 313

*MASTERCLOCK 312 PI1300 P2 311 NP1 301 NP2 313

.MODEL npf PMOS(LEVEL=2 VTO=-0.75 TOX=4O0E-10 NSTB=6.OE+15
"+ XJ=0.OSU LD=0.20U UO=-255 UCRIT=0.86E5 UEXP=-0.29 VMAX=3.0E4
"+ NEFF=2.65 DELTA=l.0 RSH=101 CGSO=1.9E-10 CGDO=1.9E-10
"+ CJ=250U CJSW=350P MJ=0.535 MJSW=0.34 PB=0.8)

MODEL nnf NMOS(LEVEL=2 VTO=+0.775 TOX=400E-10 NSIJB=8.OE+1 5
"+ XJ=0.15U LD=0.20U UO=650 UCRIT=0.62E5 UEXP=0.125 VMAX=5.1E4
"+ NEFF=4.0 DELTA=l.4 RSH=36 CGSO=1.95E-10 CGDO=1.95E-l0
"+ CJ=195U CJSW=500P MJ=0.76 MJSW=0.30 PB=0.8)

*Power Supplies
VDD 102 0 5
VSS 105 0 -5

MO 300 301 102 102 npf L=2.OU W=28.OU
MI 105 301 300 105 nnf L2.OU W=12.OU
M2 301 304 102 102 npf L=2.OU W=28.OU
M3 105 304 301 105 nnf L=2.OU W=12.OLJ
M4 304 305 102 102 npf L=2.OU W=14.OU
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M5 105 305 304 105 nnf L-2.OU W=6.OU
M6 305 306 102 102 npf L-2.OU W-14.OU
M7 105 306 305 105 nnf L-2.OU W-6.OU
Mg 306 307 102 102 npf L=2.OU W-7.OU
M9 105 307 306 105 nnf L=2.OU W=3.OU
MI0 307 308 102 102 npf L-2.OU W-7.OU
MI1 105 308 307 105 nnf L-2.OU W=3.OU
M12 102 309 310 102 npf L-2.OU W-7.0U
M13 310 311 308 102 npf L-2.OU W-7.OU
M14 308 309 105 105 nnf L-2.OU W-3.OU
M15 308 311 105 105 nnfL=2.OU W=3.OU
M16 309 312 102 102 npf L-2.OU W=7.OU
M17 105 312 309 105 nnf L-2.OU W-3.OU
M18 311 313 102 102 npf L-2.0U W-28.OU
M19 105 313 311 105 nnf L-2.OU W-12.OU
M20 313 314 102 102 npf L-2.OU W-28.OU
M21 105 314 313 105 nnf L-2.OU W-12.OU
M22 314 315 102 102 npf L-2.OU W-14.OU
M23 105 315 314 105 nnf L-2.OU W-6.OU
M24 315 316 102 102 npf L-2.OU W-14.OU
M25 105 316 315 105 nnf L=2.OU W=6.OU
M26 316 317 102 102 npf L=2.OU W-7.OU
M27 105 317 316 105 nnf L-2.OU W=3.OU
M28 317 318 102 102 npf L-2.OU W-7.OU
M29 105 318 317 105 nnf L=2.OU W-3.OU
M30 102 312 319 102 npf L-2.OU W-7.OU
M31 319 300 318 102 npf L-2.OU W-7.OU
M32 318 312 105 105 nnf L-2.OU W-3.0U
M33 318 300 105 105 nnf L-2.OU W-3.OU

CO 318 105 60F
CI 317 105 46F
C2 316 105 46F
C3 315 105 68F
C4 314 105 68F
C5 105 105 326F
C6 311 105 125F
C7 313 105 11SF
C8 312 105 28F
C9 309 105 50F
CIO 308 105 60F
Cll 307 105 46F
C12 306 105 46F
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C13 305 105 68F
C14 304 105 68F
C15 300 105 120F
C16 102 105 390F
C17 301 105 121F

.ENDS CLOCK

.SUBCKT SWITCH 104 106 100 103 108 101 107
*IN1 104 1N2 106 OUT 100 PI1103 P2 108
*NPI 101 NP2 107

MODEL npf PMOS(LEVEL=2 VTO=-0.75 TOX=400E-10 NSTB=6.OE+15
"+ XJ=0.05U LD=0.20U UO=255 UCRIT=0.86E5 LJEXP=-0.29 VMAX=3.0E4
" NEFF=2.65 DELTA=1.0 RSH=lO1 CGSO=1.9E-10 CGDO=1.9E-10

"+ CJ=250U CJSW=350P MJ=0.535 MJSW=0.34 PB=0.8)

MODEL nnf NMOS(LEVEL=2 VTO=+0.775 TOX=400E-10 NSUB=8.OE+15
+ XJ=0.15U LD=0.20U UO=650 UCRIT=0.62E5 IJEXP=-0.125 VMAX=5.1E4
+ NEFF=4.0 DELTA=1.4 RSH=36 CGSO=1.95E-10 CGDO=1.95E-10
+ CJ=195U CJSW=500P MJ=0.76 MJSW=0.30 PB=0.8)

VDD 102 0 5
VSS 105 0 -5

MO 100 101 104 102 npf L2.OU W=60.OU
M 1 104 101 100 102 npf L2.0U W60.OU
M2 100 103 104 105 nnf L=2.OU W=45.OU
M3 104 103 100 105 nnf L2.OU W=45.OU
CO 100 105 169F
Cl 104 105 383F
M4 100 107 106 102 npf L2.OU W=60.OU
M5 106 107 100 102 npf L2.OU W=60.OU
M6 100 108 106 105 nnf L2.OU W=45.OU
M7 106 108 100 105 nnf L2.0U W45.OU
C2 100 105 169F
C3 106 105 383F

ENDS SWITCH

*Power Supplies
VIN 3 0 SIN(0 0. 1 10OKHz)
VCLK 8 0 PULSE(5 -5 O.Ous 2ns 2ns 0.O5us Ol1us)

III



X1 0 45 OPAMPI
X2 5 67 OPAMPI
X3 8 9 10 11 12 CLOCK
X4 0 7 15 9 10 11 12 SWITCH
X5 6 0 18 9 10 11 12 SWITCH
X6 0 621 9 10 11 12 SWITCH
X7 0 024 910 1112 SWITCH

C 24 21 0.7P
CA 18 15 4.3P
CFI176 5OP
CF2 45 SOP
CLD 7 0 2200P

*Feedback
RF 7 4100K
RIN 34 10K

.TRAN.Olus lO0us
.PROBE
.END)

E. PSPICE Simulation File For Figure 8.5 and Figure 8.6

* *SUBCIRCUIT DEFINITION

.SUBCKT OPAMP1 10 111 10 1
*INV1 ERTING INPUT I111
*NONPINVERTING INPUT 10
*OUTPUT 101

*N29T SPICE LEVEL 2 PARAMETERS

.MODEL nnf NMOS (LEVEL=2 P111=0.600000 TOX=4.1I600E-08 XJ=0.250000U
TPG=I
"+ VTO=0.8679 DELTA=4.0030E+00 LD=1 .9290E-07 KP=4.9888E-05
"+ UO=601 .0 UEXP-1 .6020E-01 UCR.IT=8.0970E+04 RSH=2.3630E+O1
"+ GAMMA=0. 5303 NSUB=5 .83 70E+1 5 NFS=4. 5450E+1 2 VMAX=6. 1580E+04
"+ LAMBDA=2.9870E-02 CGDO=2.40 18E- 10 CGSO=2.401I8E- 10
"+ CGBO=4.0974E- 10 CJ= 1.0068E-04 MJ=0.8562 CJSW=4.653SE- 10
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+ MJSW=0.343293 PB=0.800000)
* Weff = Wdrawn - DeltaW
* The suggested Delta W is -3.9960E-07

.MODEL npf PMOS (LEVEL=2 PiAJ=0.600000 TOX=4.1600E-08 XJ=0.250000U
TPG=-1
"+ VTO=-0.9403 DELTA=4.6650E+00 LD=3.4100E-07 KP=1.8378E-05
"+ UO=221.4 UEXP=2.5580E-01 UCRIT=5.1320E+04 RSH=6.1590E+01
"+ GAMMA=0.70 10 NSUB= 1.0200E+1 6 NFS=4. 5550E+1 2 VMAX=9.9990E+05
"+ LAMBDA=4.3 880E-02 CGDO=4.2459E- 10 CGSO=4.2459E- 10
"+ CGBO=4.1990E-10 CJ=3.1845E-04 MJ=0.5734 CJSW=3.5031E-I0
"+ MJSW=0.337596 PB=0.800000)
*Weff = Wdrawn - DeltaW
*The suggested Delta W is -4.6260E-07

*Power Supplies
VDD 102 0 5
VSS 105 0 -5

MI 102 103 101 102 npf L=10.OU W=164.OU
M2 104 104 102 102 npf L=10.OU W=66.OU
M3 103 105 100 102 npf L=10.OU W=10.OU
M4 101 106 105 105 nnf L9.OU W=50.OU
M5 106 107 105 105 nnf LlO.OU W=71.OU
M6 102 103 106 105 nnf L=176.OU W=10.OU
M7 108 107 105 105 nnf LlO.OU W=53.OU
M8 102 109 103 102 npf L=10.OU W=60.OU
M9 109 109 102 102 npf L=1.OU W=60.OU
M1O 108 110 103 105 nnf L1O.OU W=66.OU
MI 109 111 108 105 nnf LlO.OU W=66.OU
M12 104 104 107 105 nnf L46O.OU W=10.OU
M13 105 107 107 105 nnf LlO.OU W=27OU

CO 105 105 375F
Cl 109 105 259F
C2 108 105 235F
C3 107 105 11 8F
C4 106 105 49F
C5 102 105 657F
C6 101 105 1097h
C7 100 105 119F
C8 104 105 436F
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C9 103 105 381F

cc 100 101 5P

.ENDS OPAMPI

.SUBCKT SWITCH 103 107 100 106 108 104 101
*IN1 103 1N2 107 OUT 100 P1 106 P2 108
*NP1 104 NP2 101

MODEL nnf NMOS (LEVEL=2 PHI=0.600000 TOX=4. 1600E-08 XJ=0.250000U
TPG=1
"+ VTO=0. 8679 DELTA=4. 0030E+OO LD= 1.9290E-07 KP=4.9888E-05
"+ UO=601 .0 UEXP=1 .6020E-01 UCRIT=8.0970E+O4 RSH=2.3630E+O1
"+ GAMMA=0. 5303 NSUB=5 .83 70E+1 5 NFS=4.5450E+1 2 VMAX=6.1I580E+04
"+ LAMBDA=2.9870E-02 CGDO=2.40 18E- 10 CGSO=2.401I E- 10
"+ CGBO=4.0974E-1 0 CJ=1 .0068E-04 MJ=0.8562 CJSW=4.653 SE-I 0
"+ MJSW=0.343293 PB=0.800000)
"* Weff = Wdrawn - DeltaW
"* The suggested DeltaW is -3.9960E-07

.MODEL npf PMOS (LEVEL=2 PHI=O.600000 T0X=4. 1 60E-08 XJO0.250000U
TPG=-1
"+ VTO=-0.9403 DELTA=4.6650E+00 LD=3.4100E-07 KP--1.8378E-05
"+ UO=22 1.4 UEXP=2.5580E-0 1 UCRIT5. 1 320E+04 RSH=6. 1590E+O 1
"+ GAMMA=0.70 10 NSUB= 1.0200E+ 16 NFS=4.5550E+1 2 VMAX=9.9990E+05
"+ LAMBDA=4.3880E-02 CGDO=4.2459E- 10 CGSO=4.2459E- 10
"+ CGBO=4.1I990E- 10 CJ=3.1 845E-04 MJ=0.5 734 CJSW=3 .5031 E-10
"+ MJSW=0.337596 PB=0.800000)
"* Weff = Wdrawn - DeltaW
"* The suggested DeltaW is -4.6260E-07

*Power Supplies
VDD 102 0 5
VSS 105 0 -5

MO 100 101 107 102 npf L=2.OU W=7.OU
MI 103 104 100 102 npf L=2.OU W=7.OU
M2 100 108 107 105 nnf L=2.OU W=4.OU
M3 103 106 100 105 nnf L=2.OU W=4.OU

CO 103 105 29F
Cl 100 105 29F

114



C2 108 105 29F

.ENDS SWITCH

.SUBCKT CLOCK 312 300 311 301 313
*MASTER CLOCK 312 PI 300 P2 311 NPl 301 NP2 313

.MODEL nnf NMOS (LEVEL=2 P111=0.600000 TOX=4.1I600E-08 XJ=0.250000U
TPG= 1
"+ VTO=O. 8679 DELTA=4.003 OE+O0 LD=1 .9290E-07 KP--4.9888E-05
"+ UO=60 1.0 UEXP= 1.6020E-O 1 UCidT=8.0970E+04 RSH=2.3630E+O 1
"+ GAMMA=0.5303 NSUB=5.8370E+1 S NFS=4.5450E+12 VMAX=6. 1580E+04
"+ LAMBDA=2.9870E-02 CGDO=2.40 18E- 10 CGSO=2.40 18E- 10
"+ CGBO=4.0974E- 10 CJ=-1 .0068E-04 MJ=O.8562 CJSW=4.653SE- 10
"+ MJSW=0.343293 PB=0.800000)

*Weff = Wdrawn - DeltaW
*The suggested Delta-W is -3.9960E-07

.MODEL npf PMOS (LEVEL=2 PIU=O.600000 T0X=4.1600E-08 XJO0.2SOOOOU
TPG=- 1
"+ VTO=-0.9403 DELTA=4.6650E+00 LD=3.4100E-07 KP=1.8378E-05
"+ UO=221 .4 UEXP=2.5580E-01 UCRII=5. 1320E+04 RSH=6. 1590E+O1
"+ GAMMA=0.7010 NSUTB=1 .0200E+16 NFS=4.5550E+1 2 VMAX=9.9990E+05
"+ LAMvfBDA=4.3 880E-02 CGDO=4.2459E- 10 CGSO=4.2459E- 10
"+ CGBO=4.1990E-10 CJ=3.1845E-04 MJ=0.5734 CJSW=3.5031E-10

MJSW=0.337596 PB=0.800000)
*Weff = Wdrawn - DeltaW
*The suggested Delta-W is -4.6260E-07

*Power Supplies
VDD 102 0 5
VSS 105 0 -5

MO 300 301 102 102 npf L=2.OU W=28.OU
MI 10S 301 300 105 nnf L=2.OU W=12.OU
M2 301 304 102 102 npf L=2.OU W=28.OU
M3 105 304 301 105 nnf L=2.OU W=12.OU
M4 304 305 102 102 npf L=2.OU W=14.0U
MS 10S 305 304 105 nnf L=2.OU W=6.OU
M6 305 306 102 102 ripf L2.OU W=14.OU
M7 105 306 305 105 nnf L=2.OU W=6.OU
M8 306 307 102 102 npf L=2.OU W=7.OU
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M9 105 307 306 105 nnf L-2.OU W-3.OU
MIO 307 308 102 102 npf L=2.OU W=7.OU
MI 1 105 308 307 105 nnf L=2.OU W=3.0U
M12 102 309 310 102 npf L-2.OU W=7.OU
M13 310 311 308 102 npf L=2.OU W=7.OU
M14 308 309 105 105 nnf L=2.OU W=3.OU
M15 308 311 105 105 nnf L=2.OU W=3.OU
M16 309 312 102 102 npf L=2.0U W=7.OU
M17 105 312 309 105 nnf L=2.OU W=3.OU
MI8 311 313 102 102 npfL=2.OU W=28.OU
M19 105 313 311 105 nnfL=2.OU W=12.OU
M20 313 314 102 102 npf L=2.OU W=28.OU
M21 105 314 313 105 nnfL=2.OU W=12.OU
M22 314 315 102 102 npf L=2.OU W=14.OU
M23 105 315 314 105 nnf L=2.OU W=6.OU
M24 315 316 102 102 npf L=2.OU W=14.OU
M25 105 316 315 105 nnf L=2.OU W=6.OU
M26 316 317 102 102 npf L=2.OU W=7.OU
M27 105 317 316 105 nnf L=2.OU W=3.OU
M28 317 318 102 102 npf L=2.OU W-7.OU
M29 105 318 317 105 nnf L=2.OU W-3.OU
M30 102 312 319 102 npf L-2.OU W=7.OU
M31 319 300 318 102 npf L-2.0U W=7.OU
M32 318 312 105 105 nnf L=2.OU W-3.OU
M33 318 300 105 105 nnf L=2.0U W=3.OU

CO 318 105 60F
Cl 317 105 46F
C2 316 105 46F
C3 315 105 68F
C4 314 105 68F
C5 I05 105 326F
C6 311 105 125F
C7 313 105 118F
CS 312 105 28F
C9 309 105 5OF
CIO 308 105 60F
CII 307 105 46F
C12 306 105 46F
C13 305 105 68F
C14 304 105 68F
C15 300 105 120F
C16 102 105 390F
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C17 301 105 121F

.ENDS CLOCK

*Power Supplies

VIN 3 0 SIN(O 0.1 400KHz)
VCLK 8 0 PULSE(5 -5 0.Ous 2ns 2ns 0.05us 01us)

X1 0 4 5 OPAMP1
X2 5 6 7 OPAMP1
X3 8 9 10 11 12 CLOCK
X4 0 7 15 9 10 11 12 SWITCH
X5 6 0 18 9 10 11 12 SWITCH
X6 0 621 9 10 1112 SWITCH
X7 0 024 9 10 11 12 SWITCH

C 2421 .1P
CA 18 15 .1P
CF1 7 6 10P
CLD 7 0 1OP

*Feedback

RF 74 100K
RIN 3 4 10K

.TRAN .00002us 2.3us
.PROBE v(3),v(7)
.END
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